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The Applicability of Geovisualization 
techniques in Exploratory Data Analysis 
methodology 

by: Isaac Emrick, Mike Harman, Josh Johnson, Frank LaFone. 

Abstract 
 Three dimensional geovisualization and exploratory data analysis form a natural pair in a 

virtual environment. The strengths of 3D geovisualization augment the analysis process while 

adding utility and purpose to the geovisualization software.  We integrated 2.5D geovisualization 

software, immersive technology and EDA principles, which allowed for the development of a 

prototype 3D EDA system.  This system was capable of exploring the strengths and weaknesses 

of the theory and identifying the major technological hurdles than we need to overcome in order 

to gain reasonable functionality and control.  With debugging and additional product 

development to improve user control, maneuverability, recognition, and brushing capabilities, a 

working immersive environment for EDA is possible.  It is unclear if this prototype and any 

future manifestations will yield a marked improvement over the 2.5D workstation environment 

already available, but it is clear that a highly functional working immersive environment with 

greater user controls will outperform the working prototype. 
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Introduction 
 In the absence of a proper tool, human kind has but two choices, we must make do with 

the tools at hand or build a better tool.  A prototype 3D immersive environment for EDA is just 

such a tool.  This prototype is a patchwork process of software and hardware drawn together like 

a collage of not quite right tools.  We utilized the best available tools to create an environment as 

close to an ideal virtual EDA environment as we could.  Our prototype was successful at many 

levels, and the development identified many processes and functions that are fundamental and in 

some cases obligatory to the creation of a highly functioning immersive EDA environment.  This 

report will go about examining the current literature, explaining our objectives, chronicling our 

attempt to construct a prototype highly functioning immersive EDA environment, and what we 

witnessed, learned, and scorned along the way. 

 

Literature Review 
 Above all, Exploratory Data Analysis (EDA) is the process of exploring data in its raw 

form.  It is about attempting to develop linkages between data points without imposing 

assumptions on those linkages.  Cox and Jones write, “In exploratory data analysis, attempts are 

made to identify the major features of a data set of interest and to generate ideas for further 

investigation…” (Cox and Jones, pg. 135)  EDA brings explanatory power to research efforts 

without obscuring any of the raw information contained in the data itself. 

 EDA is comprised of two key components – data description and data modeling 

(Chatfield, pg. 6).  Data description is the initial exploration of patterns and linkages within the 

data.  Most of this work is built upon techniques first developed by Tukey in the late 1970‟s.  

The key to this process is a non-destructive or transformative impact upon the data itself.  
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Equally important to the description of the central data is the capturing and understanding the 

outlier data.  Largely, this process is achieved through the application of different data viewing 

methods, or visualization.  More specifically, Anselin suggests “representation of data by means 

of multiple and simultaneously available „views‟, such as a table, a list of labels, a bar chart, pie 

chart, historogram, stem and leaf plot, box plot, or scatter plot.”  The descriptive process leads to 

the formulation of data models that help researchers to develop testable hypotheses.  These 

models are designed to iteratively „tease out‟ relationships between the data points, particularly 

between outlier data points. 

 EDA brings several strengths to data analysis.  Tukey suggests that, assuming a 

researcher enters the process with no prior knowledge of the data, EDA allows researchers to 

explore data linkages with no inherent bias.  Eherenberg takes minor issue with this, suggesting 

that prior knowledge cannot be avoided and therefore should not be ignored.  However, this prior 

knowledge should not be allowed to prejudice the findings (Cox and Jones, pg. 135).  These 

biases run the danger of creating a form of tunnel vision blinding the researcher from potential 

lines of inquiry.  Sibley notes that, “Several writers have noted that hypothesis confirmation only 

discourages researchers from considering new ideas” (Sibley, pg.4).  EDA is an incredibly 

resistant approach, as outliers are taken into the account in the explanation and descriptive 

process. 

 Exploratory Spatial Data Analysis (ESDA) is a variation of EDA.  ESDA has grown from 

a recognition that the power of GIS allows for the exploration of spatial data in ways hitherto 

unobtainable.  “It is widely recognized that many of the geographical analysis techniques of the 

1960‟s failed to take advantage of the visualization and data manipulation capabilities embodied 

in modern GIS” (Anselin, pg. 253).  Hence GIS technology allows for the intersection of EDA 
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techniques of data discovery but in a highly interactive graphical format.  Researchers can 

interact directly and instantaneously with spatial data through common GIS functions (Anselin, 

pg. 253).  ESDA is an open field for research and development, both in analytical tools and 

visualization tools.  “Many ESDA techniques have been developed quite recently and this 

remains an area of very active research” (Anselin, pg. 254). 

 Interactive Human-Computer Interfaces (HCI) are key to the development of EDA and 

ESDA models, especially in regard to their use in GIS. As Anselin noted, GIS is a well 

developed pallet of tools for exploratory data analysis. Nöllenburg further suggests that there are 

three components to a well developed HCI: effectiveness, efficiency, and satisfaction. He notes 

that there are two main classes of interaction: focusing and linking/brushing techniques.  

Focusing essentially links the researcher with the data itself, allowing the researcher to move 

around and within the data.  It is an “interactive modification that selects what to see in a single 

display and how it is seen” (Nöllenburg, pg. 276).  Linking and brushing techniques focus upon 

query techniques.  Linking is “selecting data in multiple views”, whereas brushing is “selecting 

display objects by pointing on them or encircling them on the screen” (Nöllenburg, pg. 279).  

Clearly the two are closely related.  The HCI is a method by which the researcher can effectively 

explore the data as it is visualized in the EDA/ESDA technique. 

 Visualization is part and parcel of EDA and ESDA techniques.  Authors commonly move 

directly into visualization techniques as a first step in EDA (Charlton, Chatfield, Sibley, and 

others).  Visualization takes two forms – textual descriptive and graphic representation.  

Common statistical techniques including histograms, stem and leaf plots, and box plots allow the 

researcher to quickly identify outliers and see patterns within the data.  Further techniques such 

as scatter plots represent the graphicacy of the data, as suggested by Tukey, Sibley, and 
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Eherenberg separately.  Nöllenburg identifies four key goals of visualization: exploration, 

analysis, synthesis, and presentation.  Viewing “a data set in a number of alternative ways to 

prompt both hypothesis and their critical reflection” is especially important (Nöllenburg, pg. 

261). 

 The realm of visualization is much broader than techniques described by EDA or ESDA.  

Certainly the visual is a key element to the human condition.  Batty argues it is the most 

important of senses (Batty, pg. 317).  There are almost limitless ways that a researcher can 

visualize data but the accessible methods that most closely parallel real-world experience have 

more analytical power. “Batty et al argue that it is this „connection‟ between the user and the 

model that is the distinctive measure of the virtual environment” (Raper, pg. 178). For this 

reason, a virtual environment is the most compelling approach to EDA/ESDA because it 

represents a more natural representation of reality. “Virtual environments function directly as 

geo-representations through their reconstruction of environmental content, geometry and 

topology” (Raper, pg. 178). Nicholas Hedley suggests that Virtual Reality technology must 

represent multi-attribute data, support multiple views into the same dataset, such as ego- and 

exocentric viewpoints, use real tools and natural interaction metaphors, and support for a shared 

workspace (Hedley et al., pg. 121). Virtual environments are most effective in a true three 

dimensional model, such as a Cave Automatic Virtual Environment (CAVE). Topological as 

well as spatial relationships are preserved more accurately in true three dimensional models 

compared to two-and-a-half dimensional representations.   

 Although EDA/ESDA is tightly coupled with generic visualization techniques, the 

integration of EDA/ESDA and three dimensional visualization and interaction has largely been 

unexplored.  As noted, 3D visualization is a more natural representation of the natural universe.  
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EDA/ESDA seeks to maintain the integrity of the data that the researcher seeks to explore.  

Therefore it seems natural that a visualization technique that most closely represents data in its 

most natural form would closely adhere to the goals of EDA/ESDA.  As the literature of both 

fields suggests, each field brings with it a set of capabilities and constraints.  The combination of 

EDA/ESDA with virtual environments may present challenges, but it also presents a potentially 

powerful new approach for data exploration and analysis. 

 

Objectives 
 Our objective was to utilize three dimensional geovisualization for the purposes of 

conducting exploratory data analysis.  Specifically, we examined the use of CAVE technology 

utilizing ESRI‟s ArcScene product to explore their efficiency and effectiveness in EDA.  We 

designed and constructed a prototype system to allow users to interact with multivariate data in 

an immersive environment.  Further, we identified the strengths and weaknesses of CAVE 

visualization as a tool for EDA. 

 

Methodology 
 Nearly any analysis of a dataset examining the impacts of two independent variables on 

one dependent variable could be used to meet the study‟s objectives.  However, intuitively, it 

makes sense to pick a set of data that relates to the real world.  Although EDA dictates that one 

should initially analyze the data with as little bias as possible, some understanding of how the 

variables are related might facilitate the user‟s understanding in the CAVE environment, thus 

allowing for a richer exploration of the CAVE‟s effectiveness for EDA.   
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We examined the relationship of economic output (Gross Domestic Product), population 

density (inhabitants/km
2
), broadband Internet adoption rates (subscribers/100 inhabitants) for 30 

modern, industrialized countries located worldwide, but mostly in Europe. We obtained this data 

set for the year 2004 from the Organization For Economic Co-operation and Development 

(OECD) website.  The dataset was specifically chosen to be both manageable and intuitive 

among a wide audience of users, potentially making relationships reasonably evident and 

evaluation of the technology easier. 

We encountered and resolved two issues prior to data entry.  First, we preconditioned the 

data to constrain the variables to similar scales.  GDP had a maximum value that was highly 

disparate compared to the maxima of population density and broadband adoption, forcing us to 

divide each country‟s GDP by 1000.  Secondly, we noted which parameter we assigned to each 

axis, facilitating interpretation of the data during visualization process.  

The dataset was imported into ArcMap as X,Y data from Excel spreadsheet format. GDP 

and population density were the X, Y coordinates, respectively. The resultant event data layer 

was exported as a feature shapefile. The shapefile was then added to a new ArcScene project. 

Within ArcScene we converted the shapefile into 3 dimensional data, with the 3
rd

 dimension (Z) 

represented by broadband adoption.  

To enhance the visualization of relationships within the dataset, we used the WinSTAT 

toolbar in Excel for analysis, perform a simple multiple regression, and generate a multiple 

regression equation.  We entered our X and Y variables into the multiple regression equation, 

generating a series of Z variables.  The Z variables and their X and Y counterparts were used to 

create a TIN, which was a completely flat surface.  The TIN was then converted to a shapefile, 

from which a 3D object was created using the base heights from the TIN.   
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The data was analyzed farther through a multiple polynomial regression.  We converted 

the raw data into a series of multiple order values X, X
2
, X

3
,X

4
, Y, Y

2
, Y

3
, Y

4
, and interaction 

terms XY, (XY)
2
, etc.  These terms were used as independent variables and a series of multiple 

polynomial regressions along with one mlitiple linear regresion on the X, Y and Z data.  The 

analysis was preformed in the WinSTAT add on toolbar for Microsoft Excel.  The multiple 

polynomial regression procedure was repeated with the least significant term removed one at a 

time.  After the series of regressions the analysis with the lowest p value <0.0001 was used to 

generate a multiple polynomial regression plane.  The analysis yielded a function that defines the 

plane (Z = (3.28045*10
-9

*X
4
) + (0.0014126*Y

2
) + (-1.55858*10

-6
*Y

3
) + (1.88329*10

-8
); where 

X = population density, Y = GDP, and Z = broadband adoption rate). The linear multiple 

regression yeilded the folowing equation (Z = (.210334*X) + (0.218093*Y) + (1.384699) with a 

p value of 0.0037.  The multiple polynomial regression equation was then applied to a grid of 

evenly spaced values across the data range in Excel.  The X, Y, and generated Z values were 

processed using the same procedure as the original data. The generated Z values and the 2D grid 

points were splined into a polynomial multiple regression plane.  The linear multiple regression 

equation was used to plot the point boundaries of a plane covering the range of the data.  This 

X,Y and Z data was used to create a raster surface, which was converted into a polygon.  This 

polygon was projected in 3D using the generated Z values from the linear multiple regression 

equation. 

The ArcScene project, now consisting of 3D data points and a multiple regression plane 

and surface, was projected into the CAVE. We added graphical X, Y, and Z axes with an origin 

value of zero to provide a frame of reference for data visualization. Further, we adjusted data 

point symbology to 3D Simple Marker Symbols (spheres), which caused the points that were 

nearer to users within the CAVE to be larger than those that were farther away. Data points were 
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not discernable by any characteristic other than their relative spatial positions and location along 

the axes. We labeled the data points with their respective country name. However, the current 

version of ArcScene 9.2 does not facilitate labeling of individual data points. Therefore, we 

downloaded a 3D labeling toolbar from ESRI‟s ArcObjects Online website onto our computer 

following their directions (http://edndoc.esri.com/arcobjects/8.3/?URL=/ArcObjectsOnline/ 

Samples/3D%2520Analyst/3D%2520Visualization/3D%2520Text/Label3DToolbar/Label3DToo

lbar.htm). The 3D labeling toolbar allowed us to not only label individual data points and 

features, but also customize the position of those labels relative to their respective features. The 

label names can be obtained from a any field in the feature‟s attribute table, e.g., country name. 

However, there is no provision within ArcScene to edit a feature attribute table. Therefore, we 

edited the feature attribute table with the Editor toolbar in ArcMap, then added the point feature 

into our ArcScene project. Many options in the 3D labeling toolbar allow changes to font style, 

size, and color. We used a 50 point, Times New Roman font in red to create legible labels that 

contrasted well with the background and data points. The billboarding option in the toolbar 

allows the labels to be readable regardless of viewing perspective at the workstation. However, 

once in the CAVE environment, the labels are static and were difficult to read depending on 

viewing perspective. Moreover, clusters of data points and their associated labels proved difficult 

to read, unless the data cluster was viewed at a close range. However, close range data viewing 

resulted in some loss of the perspective of relative positions of all data points. Therefore, 

zooming in and out of the data point cloud was necessary at times to view the labels and retain a 

sense of the relative positions of the data points. We also labeled the X, Y, and Z-axis with their 

respective representations, e.g., “GDP”, for information and orientation purposes within the 

CAVE.  

 

http://edndoc.esri.com/arcobjects/8.3/?URL=/ArcObjectsOnline/%20Samples/3D%2520Analyst/3D%2520Visualization/3D%2520Text/Label3DToolbar/Label3DToolbar.htm
http://edndoc.esri.com/arcobjects/8.3/?URL=/ArcObjectsOnline/%20Samples/3D%2520Analyst/3D%2520Visualization/3D%2520Text/Label3DToolbar/Label3DToolbar.htm
http://edndoc.esri.com/arcobjects/8.3/?URL=/ArcObjectsOnline/%20Samples/3D%2520Analyst/3D%2520Visualization/3D%2520Text/Label3DToolbar/Label3DToolbar.htm
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Results & Discussion 
 Moving EDA/ESDA into the CAVE environment presented a host of technical 

challenges that needed to be addressed.  The fundamental problem arises from the application of 

non-spatial data in a spatial environment.  Spatial data comes with a set of inherent 

characteristics that partially dictate behavior in spatial software systems, most notably a 

coordinate reference system.  Non-spatial data does not.  As a result ESRI products assign a 

default coordinate system to data that does not come with a coordinate system.  This causes the 

project to display in a counter-intuitive way in the CAVE. However, this deficiency is 

simultaneously an advantage in that the system is robust in its acceptance of values within the 

dataset as a coordinate system.  

Another technical problem we encountered was created when our data were outside of the 

bounds, i.e., near and far planes, that are created by OpenGL for display.  Outside of these 

planes, the standard assumes the user is incapable of viewing the data and therefore does not 

render the scene.  The problem is that the lack of a common coordinate system means that 

ArcScene informs OpenGL to draw the near view plane too far and the far view plane too near.  

In other words, the project clips out scene features too soon when a user zooms in or out.  The 

correction for this is two-fold.  First, the default view angle in ArcScene has to be expanded to 

exceed 130 degrees.  Secondly, ArcScene must be zoomed in fairly close on the project in order 

to reset the near and far planes to properly view the scene in the CAVE. 

 By default, ArcScene uses 2D symbology.  Viewing this in the CAVE environment 

makes it difficult for users relative positioning of points.  All points need to be converted to true 

3D objects.  Furthermore, sizes of symbols have to be adjusted.  However, symbology that works 

in an endogenous view might not work as well in an exogenous view.  Symbol sizes need to be 

adjusted to be the best fit for both far and near viewing, which functionally means neither is done 
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exceptionally well.  Colors have a major impact as well.  Symbology that can be visualized in an 

orthographic view on a 2D computer screen does not always work in the stereoscopic views of 

the CAVE environment.  Therefore, final symbology choices should be done in the CAVE prior 

to viewing. 

 To assist with the analysis of the data we added the linear plane and a polynomial 

regression surface to the scene, enhancing our visualization of data clusters and outliers. The 

method used to generate surfaces dictates their visibility in the CAVE. Most generated surfaces 

must have some thickness or they will not be viewable from all angles in the CAVE. However, 

surfaces that have thickness values that are too large may obscure some of the data points. 

Setting the transparency of the surface to 20–50% allowed all data points to be viewed in relation 

to and through the surface. 

 Beyond the current technical limitations of display that we were able to solve, there were 

a number of technical issues that are currently insurmountable. The ability to effectively brush 

data points would greatly enhance exploratory data analysis yet there is no method for doing so 

in the CAVE. Effective interactivity is unavailable in the CAVE environment beyond simple 

navigation. You can approximate brushing through the use of multiple operators, with one 

person at the workstation and one person in the cave. However, we found this to be largely 

ineffective. The addition of labels, while not a true interactive technique, does significantly 

increase data interpretation by allowing for the identification of individual points. Unfortunately, 

there is no way to simultaneously compare multiple attributes between points. 

 To provide a frame of reference, axes must be incorporated into the scene. However, 

there is no way to automatically derive these axes from the data with our protocol. To overcome 

the absence of this functionality, we manually created axes from a second set ? of data points. 
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The axes we used were not graduated, which would give the user a sense of scale. It is possible 

to create these graduation marks, but it is a painstaking and time-consuming process.  

 Although we solved many technical issues that we encountered throughout the process of 

creating our prototype, some major conceptual hurdles remain. When we first viewed the data 

cloud, we started from an exogenous point of view. The natural thing for a researcher to do in 

such an environment is to orient themselves around the cloud of data points. In the CAVE 

system, the center of the universe is the operator. To move around the cloud in the exogenous 

view requires that the data cloud to be the center of the universe. The endogenous view in the 

CAVE places both the user and data at the center, but the user loses the ability to see the 

complete data set. There are a few benefits to using the endogenous view. This view allows the 

user to understand the micro-level relationships of data. The immersion in the data creates a 

unique perspective not easily recreated using other technologies. The endogenous view also 

allows the user to examine the data from a several unique perspectives: from the origin, from one 

data point‟s location, or from all points above the regression plane. These perspectives may 

highlight relationships, anomalies or outliers which may be otherwise obscured. However, in the 

endogenous view, the problems with orientation and control were exasperated. 

 Motion and animation can positively or negatively impact exogenous and endogenous 

views in the CAVE. The auto-rotate function in ArcScene can be used to rotate the data cloud, 

which enhances the visualization of all the data points when viewed from afar. Auto-rotation 

overcomes the center-of-the-universe problem in the exogenous view, but requires the complex 

interaction between the workstation and the CAVE operators. It is impossible for the CAVE 

operator to directly control the cloud rotation. This is yet another example of the lack of 

interactive control that the user experiences within the CAVE environment. From an endogenous 
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point of view, rotation can help illuminate more obscure linkages. The major problem with auto-

rotation is that when viewing the data cloud from within, anything less than a 6-sided CAVE 

results in the loss of the view of data points as they rotate onto non-existent walls. Moreover, 

using the wand for motion-control was impractical with auto-rotation enabled because as the 

scene moved, the reference points within the CAVE also moved. It became impossible to 

predictably move relative to a moving point.  

 It is evident that the CAVE has much less interactive functionality than either a 

workstation or traditional EDA methods. Ignoring the differences in interactivity, it is helpful to 

compare CAVE (3D), workstation (2.5D) and traditional EDA (2D) visualizations. There are 

immediate issues with representing three variables with a two-dimensional analysis. The 2.5D 

view in ArcScecne adds a number benefits over traditional 2D analysis. The user gains multi-

dimensionality because the representation of all variables is made possible. 3D visualization 

allows the user to gain multiple perspectives by moving around and through the data, creating a 

conducive environment in which to visualize data features such as clusters and outliers. 

Moreover, the CAVE has a much larger viewing area that allows for collaborative exploration of 

the data. The CAVE also provides immersion that allows a unique perspective which may or 

may not be useful depending on the data set and user(s). The single most important difference 

between the 3D environment of the CAVE and the 2.5D representation at the workstation is that 

the CAVE is user-centric but the workstation is data-centric. EDA is data-centric; any 

technology that puts the user above the data will have limited utility.  

 In EDA analysis, the CAVE has serious technical and conceptual limitations. Some of the 

technical limitations can be overcome, but they present impediments to the application of this 

approach. Other current technical limitations render CAVE-based EDA impractical. The 
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damaging problems for CAVE-based EDA are the conceptual problems for which there are no 

solutions. The workstation environment presents itself as a more efficient and effective method 

for EDA than traditional 2D methods (e.g., stem and leaf plot) or the CAVE. 

  

Conclusions 
 The prototype that we developed for the CAVE provided little tangible improvement over 

EDA at the workstation level. Does this mean that CAVE technology is inappropriate for EDA? 

Our prototype does not definitively answer that question because of inherent limitations, most 

notably data and process issues. From a data perspective, the low sample size of our dataset 

allowed for intuitive visual interpretation. Therefore, the CAVE lends little additional power. A 

larger dataset with more complexity may increase the analytical capacity of the CAVE, over 

other visualization methods. Furthermore, the visualization of different datasets with complex 

structures, e.g., a double helix, may be enhanced in the CAVE (Appendix A). The development 

of the prototype revealed technical limitations that are relatively easy to overcome while 

simultaneously rendering the CAVE currently impractical. The utility of the CAVE would be 

greatly improved by solving these technical problems. Unless the limitations of interactivity 

within the CAVE are addressed, effective EDA is impossible. This is a technically resolvable 

problem that may allow the CAVE to become an effective and powerful EDA tool. 
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Appendix A: Additional Constructs 
Additional constructs developed and used in the process of prototype development. 

 The artificial construction of data is mentally challenging.  The process is in many ways 

like EDA in reverse.  The user must visualize what the are trying to develop and think in terms of 

points and basic grid coordinate systems.  This line of thought must then be purseude untill the 

data construct is complete and functional.  Consider the following example, try to construct a 

portion of DNA in which the relative distances between base pairs of nucleic acids and the 

number of pairs per revolution in the double helix are contextually correct.  The data you must 

develop should include proper relative spacing between nucleic acid pairs.  This will determine 

the size of the helix.  The number of pairs necessary for the helix to complete one revolution will 

determine the geometric function necessary to identify the locations of each pair.  The length of a 

strand of DNA per each helix revolution, divide by the pairs per revolution will provide the 

height increase for each new point.  After all of these figures are developed they must be 

converted to a 3D grid system of X,Yand Z values which form a right-handed spiral.   

 This idea can be converted into 3D virtual reality.   The average width of a DNA base 

pair is 22-26 angstroms.  The average distance between base pairs is 3.4 angstroms.  Based on 

the model by Watson and Crick as told by the unreferenced website Wikipedia, it is estimated 

that approximately 10.4 base pairs the double helix would complete a revolution.  This basic 

math indicates a 240 unit width, a 34 unit height, and a pair every 34 degrees from the beginning.  

 The reality of all of this is DNA exists in several states and often the double helix itself is 

coiled.  So now, all we have to do is visualize the orientation of a double helix of these 

dimensions rotating to the right on a coiled central axis.  This new layer of mathematics adds 

complexity and girth.  Each new wrinkle of detail we try to model complicates the data 
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generation workload.  The helical helix proved to be very difficult to create within the time 

allowed for this class.  However, a straight coil of DNA with proper relative spacing was 

creatable, and proved to be a valuable learning experience in 10
th

 grade geometry, and 

geovisualization.    
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Appendix B: Figures 
 

 

Figure 1: Basic model showing only axes and points. 

 

Figure 2: Model enhances with the addition of a floor. 
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Figure 3: Model with multiple linear regression plane. 

 

Figure 4: Multiple linear regression plane replaced by multiple polynomial regression surface. 
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Figure 5: EDA model is enhanced with data point labels.  

 

Figure 6: Complete model with data cloud, axes, regression surface, floor, and labels to enhance 

the analytical power of the visualization.  
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Figure 7: Exogenous view of model. 

 

Figure 8: Endogenous view, note the disorientation and difficulty in assessing the relationships 

between data. 
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Figure 9: Endogenous view towards the origin showing that the labels do not rotate with the user.  

 

Figure 10: Collaborative immersion. 
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Appendix C: Data  

Country 

Broadband 

penetration (per 

100 inhabitants, 

2004) (Z) 

Population 

density 

(inhab/km2) 

(X) 

GDP per capita 

(USD PPP) (Y) 

Denmark 18.8 126.1 36,208 

Netherlands 19.0 400.5 38,389 

Norway 14.9 14.4 54,298 

Switzerland 17.3 183.0 41,336 

Iceland 18.3 3.0 37,986 

Sweden 14.5 20.2 37,171 

Korea 24.9 484.9 24,750 

Finland 15.0 15.6 34,331 

Luxembourg 9.8 181.8 81,781 

Canada 17.8 3.3 36,610 

United Kingdom 10.5 247.3 33,925 

Belgium 15.6 345.8 34,603 

France 10.6 115.1 32,709 

Germany 8.4 230.8 33,470 

United States 13.0 32.0 45,489 

Australia 7.7 2.8 35,150 

Japan 15.0 338.1 33,111 

Austria 10.2 98.7 37,437 

New Zealand 4.7 15.6 25,927 

Spain 8.4 87.3 31,638 

Ireland 3.4 62.0 41,490 

Italy 8.1 195.4 29,754 

Czech Republic 1.6 130.6 21,933 

Hungary 3.6 108.3 18,702 

Portugal 8.2 114.5 21,918 

Greece 0.4 84.3 28,864 

Slovak Republic 1.1 110.0 17,875 

Poland 2.1 121.9 15,875 

Turkey 0.7 94.6 12,619 

Mexico 0.8 52.9 13,553 
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